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ABSTRACT 
 

Polyphenol phytochemicals have obtained huge attention owing to their numerous therapeutic applications. 

Green, oolong, and black teas are the main sources of abundant polyphenols. Theaflavins are a large group 

of polyphenols isolated from oolong and black tea. Theaflavins have shown various therapeutic advantages, 

specifically antimicrobial activity. Hear, the antiviral effect of theaflavin-3-gallate as one the main 

theaflavins against severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has been investigated 

by molecular docking study. This study exhibited the best binding affinity for the interaction of the 

theaflavin-3-gallate ligand with SARS-CoV-2 helicase NSP13 with a Vina score of -10.3 kcal/mol 

compared with theaflavin-3-gallate and spike protein S1 complex with a lowest binding affinity of -8.2 

kcal/mol. For a better understanding of the antiviral activity of theaflavin-3-gallate compound, experimental 

in vitro and in vivo studies about other bioactive compounds and drugs are needed.  

 

DOI: https://doi.org/10.22034/mnba.2023.410567.1042                                                 Copyright: © 2023 by the MNBA.  

Introduction 

For the improvement of conventional antiviral drugs 

having side effects, finding novel biocompatible, 

bioavailable, and biodegradable antiviral agents is 

necessary [1, 2]. Theaflavins with the chemical 

formula of C29H24O12 are a large group of polyphenols 

frequently available in oolong and black teas [3]. 

Theaflavin-3-3'-digallate, theaflavin-3'-gallate, and 

theaflavin-3-gallate are the main theaflavins, which 

can be synthesized from the flavan-3-ols in tea leaves 

by the enzymatic oxidation [4]. Catechins and 

theaflavins as the major phenolic group have various 

health advantages including hepatoprotective, 

neuroprotective, anti-inflammatory, skin protective, 

anticancer, antioxidant, cardioprotective, anticancer, 

and antimicrobial effects [5]. In addition, theaflavin-

3,3′-digallate remarkably decreased the upregulation of 

kidney injury molecule-1 and ameliorated renal 

ischemia/reperfusion injury in the kidney tissues [6]. 

Investigations into viral infections, specifically 

coronavirus disease 2019 (COVID-19) have obtained 

more attention because of it’s contagious nature [7]. 

Many studies have been carried out to develop novel 

antiviral compounds targeting key protein targets of 

severe acute respiratory syndrome coronavirus 2 

(SARS‑CoV‑2) [8, 9]. In the present study, the 

antiviral effect of theaflavin-3-gallate as one the main 

theaflavins against SARS‑CoV‑2) has been 

investigated by molecular docking study. For this 

study, viral receptors were the main proteases (M
pro

; a 

class of highly conserved cysteine hydrolases in β-

coronaviruses), spike protein S1, RNA-dependent 

RNA polymerase or RNA replicase (RdRp), helicase, 

and papain-like protease (PL
pro

) [10-13].  

 

Materials and methods 

Theaflavin-3-gallate as a ligand was obtained from the 

PubChem database (Figure 1a). SARS-CoV-2 helicase 

NSP13 (PDB code: 6ZSL), spike protein S1 (PDB 

code: 6M0J, resolution: 2.45 Å), RdRp (PDB code: 

6M71), PL
pro

 (PDB code: 3E9S), and M
pro

 (PDB code: 

6LU7) were receptors extracted from protein data bank 

(PDB) (Figures 1b-f). The UCSF Chimera1.12 

 

 

https://orcid.org/0000-0002-3930-1906
https://www.mnba-journal.com/
https://orcid.org/0000-0002-3930-1906
https://orcid.org/0000-0002-3930-1906
https://orcid.org/0000-0002-3930-1906
https://orcid.org/0000-0002-3930-1906


                                                 Aljelehawy / Docking of SARS-CoV-2 by theaflavin-3-gallate, 2023, 2(3): 38-44  

 

Micro Nano Bio Aspects   39 

 

program was employed to optimize the compounds. 

The molecular docking study was performed by the 

CB-Dock server (http://clab.labshare.cn/cb-

dock/php/index.php) [14, 15].  

 

 

 
Fig. 1. Chemical and schematic structures of theaflavin-3-gallate (a), 3E9S (b), 6LU7 (c), 6M0J (d), 6M71 (e), and 6ZSL (f).  

 

Results and discussion 

CB-Dock showed the highest binding affinity for the 

interaction of theaflavin-3-gallate ligand and 6ZSL 

receptor with a Vina score of −10.3 kcal/mol compared 

to theaflavin-3-gallate and 6M0J receptor with a lowest 

binding affinity of -8.2 kcal/mol (Tables 1-4). H-bonds 

were indicated for GLU197, GLN194, and GLN194 in 

the distances of 1.930, 2.243, and 2.484 Å, 

respectively (Figure 2).  

The molecular docking study showed remarkable 

interaction between theaflavin 3-gallate and the active 

site residues of M
pro

 compared to a standard molecule 

GC373 and theaflavin. M
pro

 protein of SARS-CoV-2  

 

 

 

was inhibited by theaflavin 3-gallate in an IC50 amount 

of 18.48 μM [16]. In another study, theaflavin digallate 

displayed a better docking score of −10.57 compared 

with adefovirdipivoxil (−8.25), famciclovir (−7.54), 

tecovirimat  (−7.54), darunavir (−7.5), and 

zidovudine (−7.39) [17]. In a similar study, 14 

terpenoids were evaluated for their docking interaction 

with M
pro

 and SARS-CoV-2 spike targets. In contrast 

to targeting Spike protein, deacetylnomilin (−8.35), 

ichangin (−8.40), nomilin (−8.51), and β-amyrin 

(−8.79) presented suitable energies of interaction with 

M
pro

 [18]. 

 

Table 1.  CB-dock results for interaction of theaflavin-3-gallate ligand and 6M0J receptor. 

CurPocket 

ID 

Vina  

score  

Cavity  

volume 

(Å
3
)  

Center 

(x, y, z) 

Docking size 

(x, y, z) 

Contact 

residues 

C2 -8.2 112 -26, 31, 32 24, 24, 24 

Chain E: ARG355 TYR396 PRO426 ASP428 PHE429 

THR430 GLY431 LYS462 PRO463 PHE464 SER514 

PHE515 GLU516 LEU517 LEU518 

C4 -7.3 104 -32, 12, 27 24, 24, 24 

Chain E: PHE338 GLY339 PHE342 ASN343 ALA344 

THR345 ARG346 VAL367 LEU368 SER371 SER373 

PHE374 TRP436 LEU441 ARG509 

C3 -7.0 106 -37, 43, 13 24, 24, 24 

Chain E: ARG454 ARG457 LYS458 SER459 ASN460 

LEU461 LYS462 GLU465 ARG466 ASP467 ILE468 

SER469 GLU471 ILE472 TYR473 PRO491 

C5 -6.7 94 -20, 27, 35 24, 24, 24 
Chain E: GLY381 VAL382 LEU390 PHE392 TYR396 

PRO426 ASP428 PHE429 THR430 GLY431 PHE464 

http://clab.labshare.cn/cb-dock/php/index.php
http://clab.labshare.cn/cb-dock/php/index.php
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CurPocket 

ID 

Vina  

score  

Cavity  

volume 

(Å
3
)  

Center 

(x, y, z) 

Docking size 

(x, y, z) 

Contact 

residues 

LEU513 SER514 PHE515 GLU516 LEU517 LEU518 

C1 -6.5 197 -32, 25, 7 24, 24, 24 

Chain E: ARG403 GLU406 LYS417 TYR453 LEU455 

SER494 TYR495 GLY496 PHE497 GLN498 THR500 

ASN501 GLY502 TYR505 

Table 1 (continued). 

 

Table 2. CB-dock results for interaction of theaflavin-3-gallate ligand and 3E9S receptor.  

Cu

rP

ock

et 

ID 

Vina  

score  

Cavit

y  

volu

me 

(Å
3
)  

Center 

(x, y, z) 

Docking size 

(x, y, z) 

Contact 

residues 

C5 -8.8 203 -40, 11, 10 24, 24, 24 

Chain A: VAL99 GLY100 GLY101 LEU102 GLN122 

GLN123 LEU124 GLU125 SER241 PHE242 GLY257 

THR258 PHE259 LEU260 THR278 ALA279 LYS280 

TYR306 LYS307 GLU308 

C3 -8.4 243 -5, 26, 15 24, 24, 24 

Chain A: PRO60 SER61 ASP63 THR64 ARG66 SER67 

GLU68 ALA69 PHE70 GLU71 TYR73 THR75 LEU76 

ASP77 GLU78 SER79 PHE80 LEU81 

C2 -7.7 647 -28, 21, 28 24, 24, 24 

Chain A: ASN110 LYS158 GLY161 GLU162 LEU163 

GLY164 ASP165 ARG167 GLU168 TYR265 ASN268 

TYR269 GLN270 CYS271 TYR274 

C4 -7.2 212 -28, 8, 27 24, 24, 24 

Chain A: TRP107 ASN110 LEU163 GLU264 THR266 

GLY267 CYS271 GLY272 HIS273 THR275 ARG285 

ASP287 GLY288 ALA289 HIS290 

C1 -6.4 712 -8, 12, 9 24, 24, 24 

Chain A: ASN14 ASP38 GLY39 THR55 PHE57 TYR72 

MET85 LEU88 THR91 LYS92 TRP94 PHE96 GLU135 

ARG139 ASP144 ALA146 ASN147 

 

Table 3. CB-dock results for interaction of theaflavin-3-gallate ligand and 6LU7 receptor.  

CurP

ocket 

ID 

Vina  

score  

Cavity

  

volum

e (Å
3
)  

Center 

(x, y, z) 

Docking size 

(x, y, z) 

Contact 

residues 

C3 -9.1 258 -14, 11, 72 24, 24, 24 

Chain A: HIS41 THR45 SER46 MET49 TYR54 

PHE140 LEU141 ASN142 SER144 CYS145 HIS163 

HIS164 MET165 GLU166 LEU167 HIS172 VAL186 

ASP187 ARG188 GLN189 THR190 ALA191 

GLN192 

C1 -7.6 688 -24, 1, 56 24, 24, 24 

Chain A: ARG131 ASP197 THR198 THR199 

TYR237 ASN238 TYR239 LEU271 LEU272 

GLN273 GLY275 MET276 ALA285 LEU286 

LEU287 GLU288 ASP289 GLU290 

C2 -7.4 548 -14, 34, 56 24, 24, 24 

Chain A: GLU14 GLY15 CYS16 MET17 VAL18 

GLN19 TRP31 GLN69 ALA70 GLY71 ASN95 

PRO96 LYS97 ASN119 GLY120 SER121 PRO122 

C5 -7.2 212 -34, 16, 54 24, 24, 24 

Chain A: PHE8 LYS102 VAL104 ILE106 GLN107 

GLN110 THR111 ASN151 ILE152 ASP153 SER158 

CYS160 ILE249 THR292 PRO293 PHE294 ASP295 

C4 -7.1 239 -37, 5, 58 24, 24, 24 

Chain A: VAL104 ARG105 ILE106 GLN107 

PRO108 GLY109 GLN110 THR111 PRO132 

ASN151 ILE200 VAL202 ASN203 GLU240 

THR243 ASP245 HIS246 ILE249 THR292 PRO293 
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Table 4. CB-dock results for interaction of theaflavin-3-gallate ligand and 6M71 receptor.   

CurP

ocket 

ID 

Vina  

score  

Cavity  

volume 

(Å
3
)  

Center 

(x, y, z) 

Docking size 

(x, y, z) 

Contact 

residues 

C2 -9.3 775 127, 135, 127 24, 24, 24 

Chain A: ARG249 LEU251 THR252 SER255 ASN314 

VAL315 LEU316 SER318 THR319 PRO323 ARG349 

GLU350 THR394 CYS395 PHE396 TYR456 ARG457 

TYR458 ASN459 LEU460 PRO461 THR462 ASN628 

PRO677 

C3 -8.6 724 120, 120, 136 24, 24, 24 

Chain A: ASP452 TYR455 MET542 LYS545 ARG553 

ALA554 ARG555 THR556 VAL557 LYS621 CYS622 

ASP623 ARG624 THR680 SER682 THR687 ALA688 

ASN691 LEU758 SER759 ASP760 ASP761 

C4 -6.8 574 146, 132, 82 24, 24, 24 

Chain A: ARG33 PHE35 LYS50 VAL71 LYS73 ARG74 

THR76 ASN79 GLU83 HIS99 ILE114 ARG116 THR206 

ASP208 ASN209 TYR217 ASP218 PHE219 GLY220 

ASP221 

C1 -6.7 1089 122, 139, 100 24, 24, 24 

Chain A: ASP291 GLN292 THR293 LEU302 ASP303 

ARG305 CYS306 HIS309 ARG467 LEU470 ARG735 

ASP736 VAL737 

C5 -6.1 549 121, 96, 146 24, 24, 24 

Chain A: PHE429 LYS430 GLU431 GLY432 SER433 

GLU436 LEU437 LYS438 PHE440 

Chain C: LYS2 MET3 SER4 LYS7 LYS43 ASP44 

THR45 

 

Table 5. CB-dock results for interaction of theaflavin-3-gallate ligand and 6ZSL receptor.     

CurPocke

t 

ID 

Vina  

score  

Cavity  

volume 

(Å
3
)  

Center 

(x, y, z) 

Docking size 

(x, y, z) 

Contact 

residues 

C1 -10.3 4329 -32, 20, -49 24, 24, 30 

Chain B: VAL193 GLN194 ILE195 GLY196 GLU197 

THR214 THR215 TYR217 THR228 HIS230 PRO335 

ALA336 VAL340 GLU341 

Chain A: PHE182 THR183 TYR185 GLN194 ILE195 

GLY196 GLU197 THR214 THR215 THR228 ALA336 

ARG337 ALA338 ARG339 

C5 -10.1 2002 -32, 29, -75 30, 24, 24 

Chain A: TYR149 PRO175 ASN177 ASN179 TYR180 

PRO408 ARG409 THR410 LEU411 LEU412 THR413 

LYS414 GLY415 ASP483 VAL484 SER485 SER486 

PRO514 TYR515 ASN516 THR532 ASP534 THR552 

ALA553 HIS554 ARG560 

C4 -9.7 2136 -16, 35, -64 24, 24, 24 

Chain A: LYS139 THR141 GLU142 GLU143 PHE145 

LYS146 ASN179 TYR180 VAL181 PHE182 THR183 

GLU197 LEU227 THR228 SER229 HIS230 CYS309 

ARG339 ASN361 THR380 TYR382 ASP383 PRO408 

THR410 LEU411 

C2 -8.9 3723 -11, 20, -69 24, 32, 35 

Chain A: LEU138 LYS139 GLU142 GLU143 LYS146 

ASN179 TYR180 VAL181 THR228 HIS230 CYS309 

SER310 ASN361 GLU375 MET378 THR380 TYR382 

ASP383 ALA407 PRO408 ARG409 THR410 ASP534 

SER535 

C3 -8.8 2984 -23, 20, -21 35, 24, 30 

Chain B: LYS139 GLU142 GLU143 LYS146 ASN179 

TYR180 VAL181 THR228 CYS309 SER310 VAL360 

ASN361 MET378 THR380 ASP383 ALA407 PRO408 

ARG409 THR410 LEU411 ASP534 

 

There were free binding energy (ΔG) values of −6.7, 

−6.4, −6.4, −6.3, −7.2, and −6.6 kcal/mol for ligands of  

 

eriodictyol, pemirolast, mycophenolic acid, ribavirin, 

remdesivir, and ritonavir toward M
pro

, respectively. 
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Moreover, for angiotensin-converting enzyme 2 

(ACE2) receptor,  binding energy amounts were −8.2, 

−8.6, −8.2, −7.3, and −7.5 kcal/mol for ritonavir, 

lopinavir, remdesivir, pemirolast, and eriodictyol  

drugs, respectively [19].  Probabilities of binding to 

active site-pocket were  80% and 70% for 

mycophenolic acid acyl glucuronide and remdesivir 

higher than antiviral drugs of avigan (30%), tamiflu 

(60%), and GRL-0667 (40%) [20]. Carbohydrate-

binding agents can target the homotrimeric 

transmembrane spike glycoprotein of coronaviruses, 

effectively. In this way, plant lectins and lectin-like 

mimic pradimicin-A exhibited desirable docking 

properties against N-linked glycans of SARS-CoV-2 

spike glycoprotein. Narcissus pseudonarcissus 

agglutinin, griffithsin, cyanovirin-N, and banana 

lectins had docking energies of –269.3, –252.3, –230.9, 

–219.8 (wild-type) kcal/mol, respectively toward N-

linked glycans of SARS-CoV-2 spike glycoprotein 

[21]. Herbal metabolite can hinder SARS-CoV-2 in 

safe therapy. For example, Withanoside V related to 

Withania somnifera had the best binding energy 

(− 83.45 kJ/mol) with M
pro

 compared to withanoside-

VI (− 61.97 kJ/mol), racemoside-A (− 56.35 kJ/mol), 

racemoside-B (− 52.44 kJ/mol), and shatavarin-IX 

(− 53.99 kJ/mol) [22].  

 

 

 
Fig. 2. Docking active site for model 1 obtained by CB-Dock (a), the interaction of amino acids of the SARS-CoV-2 NSP13 

helicase with the aflavin-3-gallate compound (b), and the surface around ligand of theaflavin-3-gallate (c). 

 

Conclusions  

Many research programs have been carried out to 

develop novel drugs targeting key protein targets of 

SARS-CoV-2. Finding and designing safe and 

effective antiviral agents is time consuming and 

expensive process. Molecular docking studies and the 

repurposing of approved compounds can cost-

effectively accelerate this process. The highest binding 

affinity was found for the interaction of theaflavin-3-

gallate ligand towards helicase receptor than to 

theaflavin-3-gallate and spike protein S1 receptor with 

the lowest binding affinity. Future investigations 

should be focused on experimental in vitro and in vivo 

studies for a better understanding of the antiviral 

mechanisms of theaflavin-3-gallate metabolite.  

 

Study Highlights 

 The best binding affinity was indicated for the 

interaction of theaflavin-3-gallate ligand towards 

helicase receptor than to theaflavin-3-gallate and spike 

protein S1 receptor with the lowest binding affinity. 

  Molecular docking studies and the repurposing of 

approved compounds can cost-effectively accelerate 

this process. 

 Future investigations about antiviral activity of 

theaflavin-3-gallate should be focused on 

experimental in vitro and in vivo studies.  

Abbreviations 

ACE2: Angiotensin-converting enzyme 2  

M
pro

: Main proteases 
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PL
pro

: Papain-like protease 

RdRp: RNA-dependent RNA polymerase  

SARS‑CoV‑2: Severe acute respiratory syndrome 

coronavirus 2  
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